

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 177 (2004) 3028-3031

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Growth and spectroscopic characterization of Nd³⁺: Sr₆GdSc(BO₃)₆ crystal

Zushu Hu,^{a,b} Zhoubin Lin,^a and Guofu Wang^{a,*}

^a Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ^b Graduate School of Chinese Academy of Sciences, Beijing 100039, China

Received 13 April 2004; received in revised form 9 May 2004; accepted 11 May 2004

Available online 24 June 2004

Abstract

A crystal of Nd³⁺: Sr₆GdSc(BO₃)₆ with the dimension of ϕ 20 × 30 mm³ was grown by Czochralski method. The grown crystal was characterized by X-ray diffraction and DSC analysis. The DSC analysis showed that the crystal congruently melt at 1306.7°C. The absorption and emission spectra of Nd³⁺: Sr₆GdSc(BO₃)₆ were investigated. The absorption band at 806 nm has a FWHM of 13 nm. The absorption and emission cross-sections are 2.33×10^{-20} cm² at 806 nm and 1.58×10^{-19} cm² at 1062 nm, respectively. The luminescence lifetime τ_f is 75 µs at room temperature.

© 2004 Elsevier Inc. All rights reserved.

PACS: 42.70.Hj; 78.20.-e

Keywords: A1. Optical microscopy; A2. Growth from melt; B1. Borates; B2. Solid-state laser materials

1. Introduction

With the increasing interest in diode-pumped solidstate lasers, research on more efficient new materials for diode pumping becomes important. The double borates are a type of excellent laser gain media, for example, Nd³⁺-doped $RAl_3(BO_3)_4$ (R = Gd or Y), and $RCa_4O(BO_3)_3$ (R = Y, Gd or La) are widely known laser medium materials [1–5]. The Cr³⁺- or Ti³⁺-doped $RX_3(BO_3)_4$ crystals ($R = Y^{3+}$, Gd^{3+} or the lanthanide; $X = Al^{3+}, Sc^{3+}$ can be regarded as the tunable laser gain medium [6–13]. Another type of double borate with formula $M_3R(BO_3)_3$ (M = Ba, Sr and R = La - Lu, Y, Sc) was recently reported as a new laser host materials [14–18]. The Stack family with formula $A_6 MM'(BO_3)_6$ where A = Sr, Ba, Pb or Ln (Ln = lanthanide) and M, M' = +2, +3, or +4 metal cations [19-24] belongsto the trigonal system with $R\bar{3}$ space group [19]. Since the active ions such as Nd^{3+} or Yb^{3+} can substitute for Ln or +3 metal cations of Stack family crystals, we select $Sr_6GdSc(BO_3)_6$ crystal which is one member of the Stack family as our research aim. In this paper, we report the growth and spectral properties of Nd³⁺-doped $Sr_6GdSc(BO_3)_6$ crystal.

2. Crystal growth

The raw materials of $Sr_6GdSc(BO_3)_6$ were prepared by means of solid-state reaction. The chemicals used were $SrCO_3$ and H_3BO_3 with 99.9% purity, and Nd_2O_3 , Gd_2O_3 and Sc_2O_3 with 99.99% purity. The raw materials of Nd^{3+} -doped $Sr_6GdSc(BO_3)_6$ crystal were weighed according to the following chemical reaction equation:

$$\frac{x_2}{2}Nd_2O_3 + 6SrCO_3 + 6H_3BO_3 + \frac{1-x}{2}Gd_2O_3 + \frac{1}{2}Sc_2O_3 = Nd_xSr_6Gd_{(1-x)}Sc(BO_3)_6 + 9H_2O\uparrow + 6CO_2\uparrow.$$

The excess quality of 3 wt% H₃BO₃ was added to compensate the evaporation of H₃BO₃ during the growth. After grinding and extruding to form pieces, the samples were placed in a platinum crucible and held at 1100°C for 48 h to prepare the polycrystalline materials.

^{*}Corresponding author. Fax: +86-591-3714636.

E-mail address: wgf@ms.fjirsm.ac.cn (G. Wang).

^{0022-4596/}\$ - see front matter O 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2004.05.015

 Nd^{3+} -doped $Sr_6GdSc(BO_3)_6$ (8 at%) was grown by Czochralski method in a 2 kHz frequency furnace heating a platinum crucible in air. The charge was melt

Fig. 1. Polished piece and laser road of Nd^{3+} : $Sr_6GdSc(BO_3)_6$ crystal.

Fig. 2. The DSC curve of $Sr_6GdSc(BO_3)_6$ compound.

in platinum crucible with 50 mm diameter and 40 mm high. After repeating the seed and adjusting the heating power of furnace, Nd^{3+} : $Sr_6GdSc(BO_3)_6$ crystal was grown at a pulling rate of 0.5 mm/h and a rotating rate of 10 rpm. The growing temperature was about 1300°C. Nd^{3+} : $Sr_6GdSc(BO_3)_6$ crystals with few cleavages were obtained. The maximum dimension was up to ϕ 20 × 30 mm³. Fig. 1 shows a polished piece and manufactured laser road.

To confirm the melting point of Nd^{3+} : Sr₆GdSc(BO₃)₆ crystal, DSC measurement was performed up to 1400°C at a heating rate of 10°C min⁻¹ in air using aNETZSCH-449C Thermal Analyzer. The result of DSC analysis showed that Nd^{3+} : Sr₆GdSc(BO₃)₆ crystal congruently melt at 1306.7°C as shown in Fig. 2. The structure of $Sr_6GdSc(BO_3)_6$ crystal was determined by a Simens SMART CCD diffractometer with ΜοΚα $(\lambda = 0.71073 \text{ Å})$ radiation at room temperature. The result shows that the crystal belongs to trigonal system with space group $R\bar{3}$ and a = 12.415(2), c = 9.274(2) Å, z = 3. Fig. 3 shows the X-ray powder diffraction pattern of $Sr_6GdSc(BO_3)_6$ crystal, which was obtained using a Dmax-rA type diffractometer with CuKa radiation $(\lambda = 1.54056 \text{ Å})$ at room temperature.

3. Spectroscopic characterization

A sample with dimension $9.7 \times 12.0 \times 2.2 \text{ mm}^3$ was cut from as-grown Nd³⁺: Sr₆GdSc(BO₃)₆ and used to the spectral experiments (Fig. 4). The absorption spectrum was measured using the Perkin Elmer UV-VIS-NIR Spectrophotometer (Lambda-35). Photoluminescence spectrum and fluorescence lifetime were measured using an Edinburgh Instruments FLS920 LiseSpec PS spectrophotometer.

Fig. 3. X-ray powder diffraction pattern of Sr₆GdSc(BO₃)₆ crystal.

Fig. 4. Absorption spectrum of Nd^{3+} : Sr₆GdSc(BO₃)₆ crystal.

In the absorption spectrum the strong absorptions occur at near 275, 325, 359, 526, 583, 740, 806 and 865 nm. As well known, the rare earth atoms have the $1s^22s^22p^63s^23p^63d^{10}4s^25s^25p^64f^n5d^16s^2$ configuration (n = 1-14), the trivalent rare earth ions (RE³⁺) in solids lose all 5d and 6s electrons. Since the optically active 4f electrons are shielded by the outer shell electrons, the 4f electrons of RE^{3+} ions in crystals are not strongly affected by neighboring ligands. In consequence, they produce only small energy splitting, and the gross features of the energy level diagram of RE^{3+} ions in different hosts are unchanged. Then, the assignments of RE³⁺ ion transition from the ground state to excited states can be determined by comparison with the energy levels of RE^{3+} ions in the LaF₃ crystals which was calculated by Carnall et al. [25]. Therefore, the absorption lines at 359, 526, 583, 740, 806 and 865 are due to $4f^3 - 4f^3$ transition of Nd³⁺ ions, the observed sharp absorption lines at 275 and 325 nm are due to $4f^7 - 4\hat{f}^7$ transition of Gd³⁺ ion. The absorption band at 806 nm has a full-width at half-maximum (FWHM) of 13 nm, which closes to the laser output of AlGeAs diode-laser ($\lambda \approx 808 \text{ nm}$). Since the emission wavelength of diode-laser is increased at 0.2–0.3 nm/°C with the operating temperature of laser device, the temperature stability of the output wavelength of diodelaser is needed to the crucially control. Therefore, such large line-width in Nd^{3+} : Sr₆GdSc(BO₃)₆ crystal is very suitable for diode-laser pumping, since it is not crucial to temperature stability of the output wavelength of diodelaser. The absorption cross-section σ_a was determined using $\sigma_a = \alpha/N_c$, where α is absorption coefficient, N_c is the concentration of Nd^{3+} in Nd^{3+} : $Sr_6GdSc(BO_3)_6$ crystal. which is $1.8 \times 10^{20} \text{ cm}^{-3}$. The Nd³⁺ ion concentration in Sr₆GdSc(BO₃)₆ was determined by electron probe microanalysis method with an EPM-810Q instrument, where three samples cut from the top, middle and bottom of crystal were used to measured the Nd concentration. Then the Nd³⁺ ions concentration in

Fig. 5. Fluorescence spectrum of Nd³⁺: Sr₆GdSc(BO₃)₆ crystal.

Nd³⁺: Sr₆GdSc(BO₃)₆ crystal was calculated to be average 7.3 at%, i.e. 1.8×10^{20} cm⁻³. The segregation coefficient η of Nd³⁺ ion in Nd³⁺: Sr₆GdSc(BO₃)₆ crystal is 0.91, which is defined as: $\eta =$ Nd³⁺ concentration in the crystal/Nd³⁺ concentration in the initial charge. Then, the absorption cross-section σ_a is 2.33×10^{-20} cm² at 806 nm.

Fig. 5 shows the photoluminescence spectrum of Nd³⁺: Sr₆GdSc(BO₃)₆ crystal. The three emission bands at 850–945, 1020–1150 and 1290–1450 nm are due to the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$, ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ and ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ transitions, respectively. The fluorescence lifetime $\tau_{\rm f}$ was measured to be 75 µs.

The emission cross-sections σ_e can be expressed as follows:

$$\sigma_{\rm e}(\lambda) = \beta \frac{\lambda^2}{4\pi^2 \tau_{\rm f} n^2 \Delta \nu},\tag{1}$$

where λ is emission wavelength, i.e. lasing wavelength, $\tau_{\rm f}$ is the fluorescence lifetime, Δv is the half-width frequency and *n* is the refractive index which is 1.73, β is the fluorescence branching ratios of the line which was calculated by integration of the fluorescence spectrum using

$$\beta = \frac{\int_{a}^{b} I(\lambda) \, \mathrm{d}\lambda}{\int_{0}^{\infty} I(\lambda) \, \mathrm{d}\lambda}.$$
(2)

Then, the fluorescence branching ratios β of radiative decay from ${}^{4}F_{3/2} \rightarrow {}^{4}I_{j}$ are as follows: β_{1} (900 nm) = 0.0577, β_{2} (1062 nm) = 0.6509, β_{3} (1330 nm) = 0.2943. Thus, the emission cross-sections σ_{e} corresponding to ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition is $1.58 \times 10^{-19} \text{ cm}^{2}$ at 1062 nm. Since the values branching ratios of β_{1} (900 nm) and β_{3} (1330 nm) = 0.2943 are smaller than the one of β_{2} (1062 nm), and the values of Δv for the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ transitions are larger than the one of ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ transition, the emission cross-sections at 990 and 1330 nm are more smaller than the one at 1062 in terms of Eq. (1). The spectroscopic properties of

Table 1 Comparison of spectral values of Nd^{3+} :Sr₆GdSc(BO₃)₆ and other Nd^{3+} -doped borate crystals

Crystals	Nd ³⁺ concentration $(\times 10^{-20} \text{ cm}^{-3})$	$\begin{array}{l} \text{Lifetime } (\tau_f) \; (\mu s) \\ (\times 10^{-20} \text{cm}^2) \end{array}$	<i>σ</i> _a (∼at 810 nm)	FWHM (nm)	$\sigma_e ~(\sim at ~1060 \text{ nm})$ (×10 ⁻¹⁹ cm ²)	$\tau_{\rm f} \times \sigma_{\rm e} \\ (\times 10^{-23} {\rm cm}^2 {\rm s})$	Ref.
Nd ³⁺ :Sr ₆ GdSc(BO ₃)	1.8	75	2.33	13	1.58	1.2	This work
$Nd^{3+}:LaSc_3(BO_3)_4$	5.1	118	7.1	3	1.3	1.5	[13]
$Nd^{3+}:YAl_3(BO_3)_4$	1.1	56	/	/	1.0	0.6	[26]
$Nd^{3+}:GdAl_3(BO_3)_4$	2.2	54	4.3	8.7	3.4	3.3	[3]
$Nd^{3+}:Sr_{3}Y(BO_{3})_{4}$	1.24	73	2.17	18	1.88	1.4	[15]
$Nd^{3+}:Ba_3Y(BO_3)_4$	1.05	70	1.56	15	1.82	1.3	[17]

 Nd^{3+} : Sr₆GdSc(BO₃)₆ crystal were compared with that of other Nd^{3+} -doped crystal, which is listed in Table 1.

4. Conclusion

A crystal of Nd^{3+} : Sr₆GdSc(BO₃)₆ with dimension $\phi 20 \times 30 \text{ mm}^3$ was grown by Czochralski method. The DTA analysis showed that the crystal congruently melts at 1306.7°C. The absorption and emission spectra of Nd^{3+} : Sr₆GdSc(BO₃)₆ crystal were investigated. The absorption band at 806 nm has a FWHM of 13 nm, which is suitable for diode-laser pumping. The absorption cross-section is 2.33×10^{-20} cm² at 806 nm. The emission cross-section is 1.58×10^{-19} cm² at 1062 nm. The luminescence lifetime $\tau_{\rm f}$ is 75 µs at room temperature. In conclusion, Nd^{3+} : $Sr_6GdSc(BO_3)_6$ crystal has a broad absorption, large absorption and emission cross-sections. As well known, the large absorption cross-section is available to possibly absorb the energy of pumping source and to improve the light-light conversion efficiency. The large emission cross-section easily achieves the lasing oscillation and obtains the more output power under same pumping power. To sum up these spectroscopic characterizations of Nd^{3+} : Sr₆GdSc(BO₃)₆ crystal, it is suggested that it may be regard as a potential solid-state laser material for diode-laser pumped.

Acknowledgments

This work was supported by the National Science Foundation of China (50272066) and Key Project of Science and Technology of Fujian Province (2001H107), respectively.

References

 Z.D. Luo, A.D. Jiang, Y.C. Huang, M.W. Qiu, Chinese Phys. Lett. 6 (1989) 440.

- [2] G.F. Wang, J. Opt. Soc. Am. B 18 (2001) 173.
- [3] G.F. Wang, Z.B. Lin, Z.S. Hu, T.P.J. Han, J.-P. Wells, J. Cryst. Growth 233 (2001) 755.
- [4] M. Jwai, T. Kobayshi, R. Furuya, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 36 (1997) 276.
- [5] Y. Lu, Z.S. Hu, Z.B. Lin, G.F. Wang, J. Cryst. Growth 249 (2003) 159.
- [6] G.F. Wang, T.P.J. Han, H.G. Gallagher, B. Henderson, J. Cryst. Growth 181 (1997) 48.
- [7] G.F. Wang, T.P.J. Han, H.G. Gallagher, B. Henderson, J. Cryst. Growth 163 (1996) 272.
- [8] G.F. Wang, H.G. Gallagher, T.P.J. Han, B. Henderson, Appl. Phys. Lett. 67 (1995) 3906.
- [9] G.F. Wang, W.Z. Chen, Z.B. Lin, Z.S. Hu, Phys. Rev. B 60 (1999) 469.
- [10] X.F. Long, Z.B. Lin, Z.S. Hu, G.F. Wang, T.P.J. Han, J. Alloys Compounds 347 (2002) 52.
- [11] Y. Lu, G.F. Wang, J. Cryst. Growth 253 (2003) 270.
- [12] X.F. Long, G.F. Wang, T.P.J. Han, J. Cryst. Growth 249 (2003) 191.
- [13] J.-P. Meyn, T. Jensen, G. Huber, IEEE J. Quantum Electron. 30 (1994) 913.
- [14] J.G. Pan, G.F. Wang, J. Cryst. Growth 262 (2004) 527.
- [15] J.G. Pan, Z.B. Lin, Z.S. Hu, G.F. Wang, J. Cryst. Growth 260 (2004) 456.
- [16] S.K. Pan, Z.S. Hu, Z.B. Lin, G.F. Wang, J. Cryst. Growth 263 (2004) 214.
- [17] S.K. Pan, Z.S. Hu, Z.B. Lin, G.F. Wang, J. Cryst. Growth 247 (2003) 452.
- [18] S.K. Pan, Z.S. Hu, Z.B. Lin, G.F. Wang, Mater. Res. Innovat. 6 (2002) 281.
- [19] K.I. Schaffers, P.D. Thompson, T. Alekel III, J.R. Cox, D.A. Keszler, Chem. Mater. 6 (1994) 2014.
- [20] Z.B. Lin, Z.S. Hu, G.F. Wang, Chinese J. Struct. Chem. 20 (2001) 256.
- [21] S.K. Pan, Z.S. Hu, Z.B. Lin, G.F. Wang, J. Cryst. Growth 247 (2003) 452.
- [22] J.G. Pan, Z.S. Hu, Z.B. Lin, G.F. Wang, J. Cryst. Growth 260 (2004) 456.
- [23] S.K. Pan, G.F. Wang, Chinese J. Struct. Chem. 22 (2002) 552.
- [24] Z.B. Lin, Z.S. Hu, L.Z. Zhang, G.F. Wang, Chinese J. Struct. Chem. 21 (2002) 637.
- [25] W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana, J. Chem. Phys. 90 (1989) 3443.
- [26] D. Jaquel, J. Capmany, Z.D. Luo, J. Garcfa Solé, J. Phys.: Condens. Matter 9 (1997) 9715.